About Us
  Submission Online  
  Current ISSUE
  Sample Full Paper
  More Issues
  To Be Published
  Chinese Optics Journals
  Optics Infobase
  Chinese Academy of Sciences
  Optics Infobase
  Acta Optica Sinica
  Chinese Journal of Lasers
  Laser & Optoelectronics Progress
  Contact Us  
  You are: 785263rd Vistor!  

© 2009 Chinese Optics Letters
All Rights Reserved | Terms of Use

   Home  List of Issues    Issue 01 , Vol. 01 , 2003    Article Abstract

Chirping-dependent ionization and dissociation of methane in an intense femtosecond laser field
Haizhen Ren, Chengyin Wu, Ri Ma, Hong Yang, Hongbing Jiang, and Qihuang Gong
Chinese Optics Letters , Vol.01 , Issue 01 , PP.60-60(2003)

Keywords(OCIS Code)
320.1590 (chirping), 270.6620 (strong-field processes), 260.5210 (photoionization).

We studied the ionization and dissociation of polyatomic molecule methane in an intense femtosecond laser field with wavelength of 810 nm and intensities ranging from 1.4×10^(14) to 2.6×10^(15) W/cm2 by mass spectroscopy. Abundant fragment ions were observed in addition to the strong parent ion. The effect of frequency chirp was investigated and it was found that the negatively chirped pulses dramatically enhanced the dissociation probability, which might be used to control the dissociation pathways.

©2003-2007 Chinese Optics Letters

View Full Text:PDF (477 KB)

Original Manauscript:
Manuscript Accepted:2002-10-10
Revised Manuscript:
Published :

Column:ultrafast optics
Note: This work was supported by the National Key Basic Research Special Foundation (NKBRSF) under Grant No. G1999075207, and the National Natural Science Foundation of China under Grant No. 19884001, 10104003 and 90101027. Q. Gong is the author to whomthe correspondence should be addressed, his e-mail address is qhgong@pku.edu.cn.


1. D. Bauer and P. Mulser, Phys. Rev. A 59, 569 (1999).

2. R. J. Levis and M. J. DeWitt, J. Phys. Chem. A 103, 6493 (1999).

3. M. J. DeWitt and R. J. Levis, J. Chem. Phys. 110, 11368 (1999).

4. A. Talebpour, A. D. Bandrauk, J. Yang, and S. L. Chin, Chem. Phys. Lett. 313, 789 (1999).

5. M. J. DeWitt, D. W. Peters, and R. J. Levis, Chem. Phys. 218, 211 (1997).

6. R. N. Zare, Science 279, 1875 (1998).

7. A. H. Zewail, J. Phys. Chem. A 104, 5660 (2000).

8. H. Rabitz, R. de Vivie-Riedle, M. Motzkus, and K. Kompa, Science 288, 824 (2000).

9. S. A. Rice, Nature 403, 496 (2000).

10. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and C. Gerber, Science 282, 919 (1998).

11. T. Brixner, B. Kiefer, and G. Gerber, Chem. Phys. 267, 241 (2001).

12. R. J. Levis, G. M. Menkir, and H. Rabitz, Science 292, 709 (2001).

13. C. Y. Wu, H. Z. Ren, T. T. L, R. Ma, H. Yang, H. B. Jiang, and Q. H. Gong, Int. J. Mass. Spectrom. 216, 249 (2002).

14. C. Y. Wu, H. Z. Ren, T. T. Liu, R. Ma, H. Yang, H. B. Jiang, and Q. H. Gong, J. Phys. B: At. Mol. Opt. Phys. 35, 2575 (2002).

15. J. T. Lint, T. L. Lai, D. S. Chuu, and T. F. Jiang, J. Phys. B: At. Mol. Opt. Phys. 31, L117 (1998).

16. K. Mishima and K. Yamashita, J. Chem. Phys. 109, 1801 (1998).

17. M. J. DeWitt and R. J. Levis, J. Chem. Phys. 102, 8670 (1995).

18. R. P. Singhal, H. S. Kilic, K. W. D. Ledingham, T. Mc-Canny, W. X. Peng, D. J. Smith, C. Kosmidis, A. J. Langley, and P. F. Taday, Chem. Phys. Lett. 292, 643 (1998).

19. K. Yamanouchi, Science 295, 1659 (2002).